

Record Low Arctic Sea Ice Extent in 2012:

An exclamation point on a longterm declining trend

Walt Meier, National Snow and Ice Data Center

The National Snow and Ice Data Center...

Manages and distributes scientific data

Creates tools for data access

Supports data users

Educates the public about the cryosphere

NSIDC affiliations and sponsorship

Cooperative Institute for Research in Environmental Sciences

University of Colorado Boulder

Main sponsors:

$\overline{NOAA(a)NSIDC}$

Emphasis on

- in situ data sets.
- data rescue
- products from the operational community,
- outreach products: Google Earth data sets, Sea Ice Index

SHEBA exp ship. 1m NTM imagery.

Products in cooperation with operational communities:

- National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format [Navy/NOAA/Coast Guard National Ice Center]
- Arctic Sea Ice Melt Pond Statistics and Maps, 1999, 2000, and 2001 [USGS/Reconnaissance imagery]
- Joint US-Russian Env. Working Group Arctic Atlases on CD-ROM [Medea Project and others]
- Snow Data Assimilation System (SNODAS) [National Weather Service]
- IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km and 24 km Resolution [NOAA and NIC]

Long-term sea ice decline, 1979-2011

Arctic sea ice reaches its seasonal minimum in September

Then came the summer of 2012:

September 7, 2012

September extent trend is accelerating

- Overall, the Arctic has lost
 ~50% of its summer ice cover
- The last six Septembers are the lowest in our satellite records (beginning in 1979)

Years	Trend (km ² yr ⁻¹)	% decade ⁻¹ relative to 79-00 avg.
79-01	-45900	-6.5
79-02	-51000	-7.3
79-03	-52800	-7.5
79-04	-54600	-7.8
79-05	-59400	-8.4
79-06	-60200	-8.6
79-07	-71600	-10.2
79-08	-78100	-11.1
79-09	-78700	-11.2
79-10	-81400	-11.6
79-11	-84700	-12.0
79-12*	-91200	-13.0

How big of a change is that?

How big of a change is that?

Sea ice volume decreasing

Submarine and ICESat ice thickness

Inferred thickness from sea ice age data

Age can be used as a proxy to estimate sea ice thickness

Other things being equal:

Older ice = Thicker ice

Loss of old ice

Thinner (~1-2 m)

Animation of sea ice age deleted to reduce file size. See ClimateWatch article to view animation

Thicker (~3-4 m)

Images are at weekly intervals

Melt of old ice during summer 2012

Projections of future sea ice changes

There is much interest to improve predictability of sea ice on century, decadal, and seasonal scales

Decline is faster than forecast, old IPCC models

Decline is faster than forecast, new IPCC models

Impacts of a changing Arctic sea ice cover

Sea ice plays a key role the Arctic environment, human activities in the Arctic, and in regional and global climate

Human impacts

- Local communities
- Shipping and navigation
- Resource extraction
- Tourism
- National sovereignty and defense issues
- Global climate impacts

Effects of sea ice change on global climate

Loss of summer sea ice decreases albedo

With sea ice: $\alpha \ge 60\%$

Without sea ice: $\alpha \leq 10\%$

The change from sea ice to ice-free ocean is the largest surface contrast on earth as far as solar energy is concerned

Sea Ice – Albedo Feedback

Arctic Amplification: a warmer, wetter Arctic

Temperatures:

- Ocean absorbs more of sun's energy during summer than sea ice
- Ocean heat keeps atmosphere warm into the fall
- "Arctic Amplification"

Water vapor:

- Less sea ice means more transfer of moister to the atmosphere
- More water vapor during the autumm

Autumn air temperature anomalies, (2003-2007) minus (1979-2007)

September water vapor anomalies, (2003-2007) minus (1979-2007)

Changes in Arctic sea ice affecting global climate?

- Storm tracks change
- Precipitation patterns change
- Most of U.S. becomes drier with less summer sea ice?
- Changes expected in Europe and Asia as well

Precipitation change: Low ice years minus high ice years 1981-2007

Summary

- Arctic sea ice is changing faster than expected
 - Extent is decreasing
 - Ice is thinning
 - Multiyear ice is being lost
- Impacts in the Arctic are being seen
 - Native communities
 - Coastal erosion
 - Wildlife
 - Resource exploitation
- There are already indications of possible impacts on global climate

Sea Ice News: http://nsidc.org/arcticseaicenews/
Sea Ice Data: http://nsidc.org/data/seaice_index/
Education Resources: http://nsidc.org/cryosphere/

